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1. Statement of the problem

each different case.

addressed:

effects.

impingement on the rotor blade.

The accurate computation of rotor flows requires the proper treatment
of strong, concentrated vortex sheets that are produced by rotor blades and
convect near the blades. For modern rotors, it also requires the proper
treatment of compressibility effects, including shocks, which can occur near
the blades. In addition, it requires the proper treatment of blade dynamics.
Different methods have existed for some time for separately treating each of
these effects. No method, however, has been able to treat them in combination
and provide the total analysis that rotorcraft require. The availability of a
comprehensive aerodynamic code that can meet the above challenges would
be of great benefit to the helicopter industry.(l'z) It would greatly reduce
many uncertainties in helicopter design and also reduce much of the
dependence on expensive and time consuming wind tunnel testing. This woulid
allow more efficient designs to be developed. To be used, however, such a code
should be validated against experiment, so that engineers have confidence in
its results. It must also be reliable and robust enough to be usable by
engineers in the design environment, without requiring empirical inputs for

This report concerns the development of such an analysis tool, using a
new CFD methodology termed "Vortex Embedding" which has been developed
and validated over the last several years, for the hovering rotor problem. The
new code, HELIX-II is the forward flight version of the hover code and the
original algorithm has been extended to study the forward flving helicopter
rotor. In this report three major issues concerning this problem have been

1. Detailed unsteady compressible free- wake computations with strong
vortical effects but without actual impingement with the rotor blade.

2. Incorporating the blade motion terms such as cyclic pitch variations
and flapping. This scheme is general and can be used to inciude aeroelastic

3. A separate CFD scheme has been developed to demonstrate vortex
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2. Background

Euler or Navier-Stokes equation solution methods using surface fitted,
fixed (Eulerian) grids have been shown to give accurate results for
compressible flows, even in the presence of shocks. However, when

concentrated vortices are present, these fixed grid, (or Eulerian) methods
result in large amount of unphysical numerical diffusion, uniess high order
schemes are used, together with a dense computational grid. In order to
prevent this diffusion:

e First, a higher order discretization (fifth) together with a fine ,
regular grid in the entire space where the vortex travels has been used to
solve the general problem of a vortex impinging on an airfoil.(3) This, of
course, requires a large amount of computing, although fairly efficient
implicit solvers can be used since the grid is regular.

¢ Second, a more efficient utilization of grid points can be made
with an adaptive scheme where grid points are clustered in regions of high
vorticity, and a Navier-Stokes solver used.(4) Here, a relatively a large number
of grid points must still be allocated to the vortical regions to prevent
diffusion. Since, for many problems, the vortices can propagate over
relatively large distances before impinging on a surface these methods still
require large computing resources. Further, for general vortical flows,
unstructured grids are required to achieve significant clustering. This results
in complex logic and book-keeping. Also, without regular grids, conventional,
efficient implicit solution methods cannot generally be used. The explicit
solution methods which then must be used are much less efficient and result
in much longer computing times, for realistic 3-D problems.

These two strategies are the only ones, which have been used for
general compressible strong vortex interactions in aerodynamics - where the
internal structure of the vortex is involved and must be solved for - and which
avoid significant numerical diffusion.

Potential Flow methods also use fixed, or Eulerian grids, are fully
compressible and can capture shocks.(>) Contact discontinuities, or vortex
sheets, however, are normally treated as potential discontinuities and do not




diffuse. In normal treatment, they are fixed on grid planes and do not follow

the flow. Compressible Potential Flow solutions conserve mass throughout the
field as do Euler/Navier-Stokes methods. They also conserve momentum
everywhere that there are no vortex sheets (unless very strong shocks are
present). Because potential discontinuities are constrained to lie on grid
surfaces, however, conventional Potential Flow solutions do not conserve
momentum through vortex sheets and cannot be used where these vortices
convect close to other surfaces and cause large effects.

Because of the diffusion or constraint problems associated with the
treatment of vortex sheets, the above methods, by themselves, are not suitable
for treating rotor problems, where the locations and strengths of these sheets
must be accurately computed.

Currently, the most successful CFD method for the treatment of rotor-
wake problems involves the use of vorticity embedding(VE). This method is
unique among CFD methods in that it preserves wake circulation without
requiring dense grids. This is because the circulation is not carried by the
grid, but rather by a sheet of convecting wake markers, whose circulation is
then impressed on the adjacent grid points as a local vortical velocity
distribution. This approach, used by the HELIX-1®-78) code has been
successfully applied for the prediction of hover wakes and performance.

In Fig. 1 and Fig. 2 the computed load distribution and the performance
using vortex embedding are compared with experimental data.

Forward flight is much mecre computationally intensive than hover for
several reasons. For hover any number of blades can be computed(at nc cxirz
cost) simply by appropriate specification of boundary and wake periodicity.
This is not possible in forward flight. Furthermore, in hover the end result is
a single steady flow solution (in rotating coordinates) with one wake
geometry. In forward flight, there is no steady flow solution or a single wake
geometry. The wake system is different at each time step and the solution must
be constantly reconverged to accommodate this changing wake. This
necessitated several modifications to the original approach (HELIX-I) in order
to improve the code computational efficiency and the capability to include
unsteady wakes. These have been implemented in the code HELIX-IL
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3. Vortex Embedding Method for
Advancing Rotor Blades

Recently, several new schemes have been developed(()’lo) wherein an
inner CFD based method is coupled to either a comprehensive rotor code or a
free-wake method based on a lifting surface tvpe Lagrangian method.

In our method, a Lagrangian wake convection scheme is incorporated
in a potential flow based method and thus no external coupling is required to
include the wake effects. At low advance ratio forward flights the wake effects
are important as in the case of hover and need to be modeled properly. But
unlike hover the solution is no longer axially symme.ric and the wake is
different for each time step and the solution inust be constantly reconverged
at each time step to accommodate this changing wake. With this in mind the
new algorithm was developed that is computationally efficient and as accurate
as the original algorithm.

Some important features of HELIX-II are :

1. The unsteady full potential equation is solved by a semi-implicit
method based on approximate factorization.

The solver has been modified to include multiple blades. Thus the code
computes entire 360 degrees.

At each time level Newton type sub-iterations are performed to achieve
time accuracy and to obtain the correct wake geometry.

A local time linearization provides a good initial guess for the Newton
iteration.

An improved wake convection logic provides a smooth transition from
the potential jump representation to the Lagrangian wake.

2. The wake is represented by a set of markers distributed along the
spanwise and azimuthal directions. Using an initially specified marker




strength (from a hover calculation) and the undistorted wake geometry a
vortical velocity is computed using Clebsch's variables,

q¢ =TVaA - (1)

Since a major portion of the computing time is spent on determining
this vortical velocity a new search and spreading algorithm which is faster
than the original approach has been developed using computational
coordinates instead of physical co-ordinates. This speed up is important for
computational efficiency because in forward flight it is required to update the
wake and the vortical velocity at cvery time step. The vortical velocity
accounts for the wake effects in the solution to the unsteady mass
conservation equation in the Eulerian grid.

3. Due to prescribed blade motion, flapping and structural deformations,
the blade arttitude has to be modified at each time step. These effects are easily
included by modify:ag tthe grid in the vicinity of the blade. Simple blending
functions are used to keep the outer regions unchanged.

A schematic of the HELIX-II is shown in Figure 3. It can be seen from
this that each time step of free-wake calculation involves several modular
computations and by lagging them by one time step these computations can be
performed independently at the same time. The steps are :

1. The time step is initialized. An undistorted wake is obtained using
the advance ratio and rotational speed. This undistorted wake comprises of
nodes distributed in the azimuthal and radial directions. The radial nodes are
located at cell centers and are distributed at constant intervals in the
azimuthal direction and this interval is determined from the time step. A
vortical velocity is obtained at the grid nodes using this wake and a detailed
description of this procedure is given in the following section.

2. Blade motion terms like flapping and cyclic pitch are determined
either from a coupled dynamic code or externally specified inputs. They are
included as grid changes.

3. The unsteady mass conservation equation is solved for the potential
using a finite volume scheme, with vortical velocity representing the wake. A

~1
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Figure 3: Schematic of HELIX-II solution procedure
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time linearization and Newton sub-iterations are done while solving the full
potential equation. This procedure is described in section 3.3.

4. From the potential, its gradient and the total velocity are obtained
and used for wake deformation.

5. Time step is advanced. A new node is added to the wake,
corresponding to the trailing edge location of the blade at the current time
step. Wake nodes are ddistorted to follow the local flow.

6. A new q‘V is calculated. Return to step 2. This process is continued
for several blade revolutions until the blade is trimmed and loading converges.

That is, when the azimuthal loading repeats between the revolutions the
computation is stopped.

Each step is separately explained in the following sections. Since the
approach is modular each module can separately be upgraded or modified
with an enhancement without affecting other modules. The application of
HELIX-1I for a two bladed rotor blade is shown in Chapter 4.

3.1 Wake Convection

As mentioned earlier, the wake is represented by a set of markers
distributed along the spanwise and azimuthal directions. This initial wake is
undistorted and computed using rotational and forward velocities. Each
marker node is assigned an initial circulation. This circulation, if obtained
from hover calculation is constant in the azimuthal direction and varies only
in the spanwise direction. It is updated every time step and this variation
accounts for the shed vorticity. This Lagrangian wake nodes are identified in
the Eulerian rotor fixed grid. This step involves a search procedure that first
identifies the cell.

Once the cells are identified each Lagrangian wake node is assigned a
value in computational coordinate system.

XLLv = Iy + KL Lv




where I; Ly refers to the Eulerian grid cell the marker node (L,LV) is located
and KL,LV is the distance from each face of the cell. With )_(.u_v and I' v

describing the Lagrangian wake, they are used to determine the vortical
velocity in the Eulerian grid. This procedure is described in the next section.

The wake convection procedure for a new time step involves the
following steps:

1. The inertial coordinates of the blade fixed grid is obtained
corresponding to the new time step.

2. A set of new marker nodes is added. They correspond to the blade
trailing edge location at each spanwise station of the inertial grid.

3. All marker nodes are displaced to follow the local flow. That is, given
the inertial grid, using a search procedure the location of the Lagrangian
nodes are determined in the Eulerian grid. Then the grid velocities (3
components) are interpolated to the wake nodes using a trilinear
interpolation. The new wake coordinates are given by

Xpervasar = Xppve + Vipv . At —-—(2)

-ty
where Vi jv is the interpolated velocity.

During this step, in addition to obtaining the inertial coordinates of the
wake, the cell identifying procedure provides the marker computational
coordinates. They are used for vortical velocity computation. These integrated
marker nodes define the new wake for the present time step. The wake
coordinates along with blade loading determine the convergence of the
solution. In this module, the search algorithm requires the maximum amount
of computing time. This process involves intensive vector and geometric
computations. The present. algorithm is very fast and general. Also,
exhaustive search is performed only once in the beginning and subsequent
searches use information from the earlier computation.

In HELIX - I, the time step for Lagrangian integration was chosen based
on the local grid spacing in the azimuthal direction. This flexibility provided a
greater accuracy in the wake geometry in regions near the blade where the

10
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grid is dense. In HELIX - II, a uniform azimuthal node distribution is needed
for time accurate computations and the original approach is no longer
practical. When a large time step ( like 4 degrees ) is chosenthis may result in
poor resolution in regions near the blade where the grid is dense and a
4 degree interval may skip the entire blade. Without enough nodes, the
resulting 'c';’v computation will be inaccurate as the nodes may 'jump' several
computational cells in 1 time step. In order to prevent this, a sub
interpolation scheme is used which sub divides the computed waike between
nodes. The wake with these added sub nodes mimics the local tim= stepping
approach of HELIX - I and is used only for vortical velocity computation. The
subdivision can be described as follows:

Let )_(.CL. Lv be the computed computational coordinate of the wake node

(L, LV). 'L" is the azimuthal index and LV is the radial index.

Define,
Nj = Xcp+t,Lv - Xcp,Lv

If Njis greater than 1, N; number of 'sub' nodes would be added between

nodes L and L + 1. These subnodes will have the grid indices as their X
coordinates and the other two coordinates are obtained using weighted
interpolation. That is :

XI(LLV) = Re(L+1L,LV)*F/F + Xc(LLV) * K/ F

where F; , F» and F; are weighting functions. [ (L,LV) the wake node

circulation is also interpolated in a similar manner to the sub nodes. This new
wake with atleast 1 sub node in each cell is used for " calculations.

3.2 QV Calculation

Once the wake is obtained for any given time step, the calculation of gy
is performed. That is, the circulation of convecting Lagrangian wake nodes
are impressed on the adjacent grid points as a local vortical velocity
distribution. This step involved a search procedure in the original algorithm
that was computationally intensive. In that approach the physical

11




Lagrangian inertial coordinates were used and an exhaustive search over the
entire grid would determine the wake nodes that contributed to the vortical
velocity at each grid point. Since for hover, the wake is axially svmmetric the
final solution involves a single wake geometry, this procedure is still
acceptable and simple to implement. The steps involved are:

1. Compute Lagrangian wake )—(.w (L.LV)

2. For each (i,j,k) of Eulerian grid )-(.E( i,}, k) compute the distance As
from an )-('w( wake ) panel.

If ( As >a) set,

where 'a' is a specified smearing distance
3. If As < a, compute,
3’ = Vi
where I' is interpolated circulation and
A =

. —p
sin=S,

O
®|a

§n is the normal distance of panel from a given node. The details of this
procedure can be found in Ref. 6.

In forward flight, the wake is time dependent and there is no single
wake geometry. One trim calculation may involve several azimuthal
revolutions and each revolution require as many wake computations as the
number of time steps. So the procedure outlined earlier will be prohibitively
expensive and impractical. So a revised scheme has been developed which is
memory intensive (requires lot more storage) but much faster. In this:

1. The wake convection and the subsequent smearing to compute
Clebsch's constants are done simultaneously. That is, in order to convect the
wake the grid velocities will have to be interpolated to the marker location.
During this process the Lagrangian nodes location are obtained in the index
(computational) space. They are saved as Xc (L. LV).
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2. Now obtain,
IC(L,LV) = INT(XC(L,LV)

3. From each IC(L, LV) node define a smearing region in computational
space given by

R = [c=D - (2)
where 'D' is the number of cells over which the ¥ will be spread in

the computational space.

4. Obtain Clebsch's variables T'jjx and A at these cell nodes in

computational space using Eqn 1. Since I"'and A are scalars they are invariant
and can be transported to the rotor fixed grid to determine g ".

5. A grid node can get contribution from more than one Lagrangian
wake node. Hence these contributions are added and a I" and A are obtained
using interpolation like formulae :

T W;

Ty = —=
2 Wik

- S, Wi

}"l'jk = __.l._UE —=—{3)
z wijk

- . ;k

Nk = Lsin —D\IZUZ

where Wik is a weighting function given by,
Wik = (1 - —_—
ASijk is the distance of a wake node from the grid point.

§N is the signed normal distance of a grid node from a wake panel.

I' is the strength of the wake node under consideration. It has to be observed

that these functions have the same definitionas the original approach except




i

that they are defined in computational space and not physical space. Finally,
q"Y is computed using

q' = Tk Vg ——(4)

Here, the gradient is computed using the same box scheme as used for the
potential calculation.

3.3 Solution to Full Potential Equation with gV

Once QY is obtained for a given time step, the time dependent mass
conservation equation is solved with Efv and grid motion terms. That is,

solve for,
0 = - -
-B-+V.(pv) = 0 ——=(5)
ot

where,
vV = €¢+Z;°"+VBM - (6)

where Vpy; represents the velocity terms from the blade motion. Salient
features are :

e [Equation ( 5 ) is discretized using a finite volume scheme.

¢ At each time step local time linearization provides good initial guess
for the Newton sub iterations.

° Circulation convection is solved in regions in the wake before being
replaced by vortical velocity.

14
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3.3.1 Time Linearization

In this section the time linearization procedure for Newton iterations
and for achieving time accuracy is outlined. A detailed description of this
procedure can be found in Ref. 11.

If n is the running index in the time direction Eqn.( 5 ) can be
represented as

f(¢) = O ——(7)

where ¢ is the unknown to be solved for at every grid point in the (n+1) time

level. The Newton iteration for solution to Eqn. ( 6 ) is

F(p+) + a—F (¢-¢x) = O
09" ¢ =9

where ¢+ 1s the currently available value of ¢ at the (n+1) level. At

convergence,
A = ¢ - ¢+ will approach zero.

Equation ( 5 ) can be discretized as :
pn+1 -

p" ) ) ] n+l -
—_—————— + | — (phU) + — (phv) + — (phw) = 0 —(7)
At Iag ° P o |

using the expansion for p1+1 etc.,

P(¢*)'Pn+a_9.| A¢ +f+£A¢*| +g+a_g.A¢*
¢ §

At 3 !¢ = ¢* 9 o n
+p+ a—p-Aq)* l = 0
el t
where,
f = pUh
g = pVh
p = pWh
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are the flux terms wit*
h = -}-, the Jacobian of transformation.
Using:
% ‘=[._"_{_1_+U-a—+v_a-+w_a_\ .
o= ¢ a? |Ac o0& m GC/ b= ¢
and similar expansion for zf— ?E and ?E- and rearranging and
ap I o
retaining terms containing Aq)’ on the LHS we get,
[+ A U'i+v‘i+w‘f_)- ]
9% on 9t S
2 0 * 4 d (~,\* d d N E
ar [ Z (PAI) Z + = (pA)) W T = (pas)” =
R:: & oM M g
2 [A% ~ 2 2 d I~ d (A d |~
= M2 (5% . gn) L a2Ad (——(pU) + —(pv) + —(pW)) ----- ®
p P 98
where,
p = ph
2
Al = (A - g_
a2
V2
Ay = (B - —
al
w2
Az = (C - 1
a2

A, B and C are terms in the expansion of Laplace's equation. The LHS
can be factored using an approximate factorization scheme and becomes

LgLnLg A = RHS




RHS involve terms containing fluxes at '*' level and density at n'® level

* * *
all known. We solve for A¢ . At convergence A¢ => 0 and ¢ = ¢
In our scheme the spanwise marching is done explicitly. Thatis, L = 1.

n+1l

*
Also, to get an initial guess for ¢ expansion about n® level is used instead

of * level.

Finally, in the wake circulation convection equation is solved using

r'-,; + Urg = 0

3.4 Dynamic Blade Motion

In this section the mechanism to include blade cyclic pitch variation,
flapping and elastic deformations is described.

The fundamental task of the comprehensive analysis is the computation
of the trim solution. The trim procedure produces control inputs ( cyclic and
collective ) for known thrust through an iterative aerodynamic/ dynamic/
elastic computation. This input can either be obtained from another
comprehensive load ( CAMRAD ) or from flight test data. A pioneering effort
in the coupling of CFD methods to a comprehensive code is shown in
Reference 12. In this technique a small disturbance for a full potential code
was coupled to CAMRAD as part of the trim procedure. The coupling was
achieved by providing a partial angle of attack from CAMRAD to the CFD code
and, in turn, returning the blade load to CAMRAD. The partial angles
represent geometric twist, blade motion ( flapping and deformation ) and
wake inflow effects and were imposed through a transpiration condition at the
blade surface.

For efficiency, the CFD computation was performed outside the trim
loop. The CFD solution for the lift was specified as a base solution used inside
the trim loop. Table lookups were used to provide a correction to the lift and
angle of attack. Convergence was achieved when the angle of attack obtained
vielded no correction to the base solution.

17
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In the present method, the aerodynamics is treated more accurately,
including the time dependent wake, and treats the entire flow field in a
unified way without requiring separate wake models and computational boxes
around each blade. The CFD calculation, which models the basic three
dimensional and unsteady inviscid flow, including the wake, requires a
knowledge of the blade deformation and motion to properly predict the loads.

In HELIX-II the cyclic pitch and flapping are included as changes to the
blade fixed grids. These changes are confined to a region close to the blade
using suitable blending functions. The procedure is described as follows.
Blade pitch variation is given by

BB = 6o + OicCosy + O35Siny + higher harmonics —-(9)

Here, B¢, is the collective pitch required for a given trim condition

B1c , is the Cosine component of the cyclic pitch variation.
81s , is the Sine component, v is the azimuth varying in time.

80, 81, and 85 are obtained either from flight tests or from a comprehensive
code.

Each blade sectional grid is rotated by 6p using,

Xnew = Xoid CosO8 + Yoid Sin8g

- Xoid Sin6g + Yoid Cos6p

Yoew

Then the 'old' and 'mew' grids are blended using:
Xoew = Xpew fij + Xow (1-fij)
Yoew = Ynew fij + Youa (1-fjj)

where fj j is blending a function that is 1 near the blade and goes smoothly to

zero near the boundaries. This blending process keeps the changes local and
leaves the grid near the boundary unchanged. The blade flapping motion is
given by

Bly) = PBo + PicCosy + PysSiny + higher harmonics

where B¢ is the coning angle , Bjc and s are cosines and sine components

of the flapping motion corresponding to the first harmonic.

——



From f(), for each time step a flapping deflection is computed using

AY flapping = [ S0 By

wr _re r is the section radius at which the flapping deflection is computed
and it is maximum near the tip. This flapping motion is incorporated using

Vijk (new) Yijk (old) + AY

flapping

Yijk mew) = Yigk fij + (1-fij)Yiji( old)
Finally, a grid velocities are computed using :

vgrid — Xesar - X
At

where X, A is the grid coordinates at time t + At and X is the grid at time
t. These velocities are added to the physical velocity while solving for the
potential.

The blending scheme is shcewn in Fig. 4. The torsional and bending
deformation due to aeroelastic effects can be accounted for using the same
technique. Here, instead of specifying the angles, they are obtained from a
coupled structural analysis code. This code takes aerodynamic loads as input
and returns the blade deformation as output.
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4. Demonstration of
Blade, Vortex Direct Impingement

In a separate effort, HELIX - I code was coupled to a BVI method and is
described in Ref. 13. Here, also a vortical velocity computed as a velocity
correction and added in the solution to mass conservation equation every time
step.

4.1 Vortical velocity computation:

Every time step, an accurate, diffusion-free vorticity, denoted wq, is
computed on the Eulerian grid near the blades, using the L field method">,
This involves convecting the L field coordinates on the Eulerian grid and
transferring vorticity coefficient values with a simple low order interpolation
scheme. The next operation in each time step involves computing velocities
that correspond to this vorticity. For doing this  involves a vector potential,
K, in three dimensions ( or stream function in two ) such that

2

VA = -
Then the vortical velocity is given by
E].V = Vx K

Instead of computing the above three full Poisson solutions, we use a
corrected, primitive variable Navier-Stokes approach. This is equivalent to
computing one, or a small number of explicit Poisson iterations each time step.
In this approach, the velocity components are convected directly on the E
Grid ( using, in our case, the image method ). Since the velocity from the
previous time step corresponded to the exact vorticity at that sume time step,
the convected velocities will closely correspond to the ne: . \act vorticity at
the new time step. The main difference is that the exact .~ 1.1\, denoted (Y)o
does not exhibit numerical diffusion, since it was computed using the L Field
method, whereas the vorticity computed from the convected velocities does.
This is due to the diffusion inherent in the direct convection method, whether
a standard numerical method or the image technique is used.




»—

The two distributions, ® corresponding to the convected q, and the
exact value, (-1.)0, are expected to differ only in the high frequency components.
Accordingly, starting from o , we would expect a simple Point-Jacobi-like
~orrection step, rather than the full set of Poisson solutions, described above,
to be sufficient to correct the velocities so that they correspond to 530 The
correction has the simple form:

—

8 = er((_n.-(I)d)

It can be seen that this is equivalent to a simple Point-Jacobi iteration step in a
Poisson Soluticn. Taking the curl of both sides and using the triple-product
form, we have:

-2 - -
dw = -ev (w-u)o)

Assuming o - (T)o vanishes outside a small region, and ® and &;o coincided at
the last time step, then a single application of this formula should correct for
numerical convection-induced diffusion. In practice, several applications
may be required at each time step. The computing time is small, however,
since vorticity is non-zero only in a small region.

This correction would not be effective for solving for q if we did not
have a convected velocity to start from. Then, it would be equivalent to
completely solving Poisson's equation with a Point-Jacobi method, which
would require many iterations since it is very inefficient for long wave
length errors. Numerical convection of velocities together with a single or
small number of correction steps, however, can be seen to be very effective.
In Fig. 5 we display initial vorticity contours of .4 and .8 maximum value
computed from a velocity field that is being smoothed to simulate numerical
convection-induced diffusion. In Fig. 6a vorticity is plotted along a horizontal
line through the center after 0, 50, and 100 diffusion cycles, with no
corrections. In Fig. 6b the same values are plotted, but with a single
application of the correction method each step, with (30 set at the initial @. It
can be seen that diffusion is effectively eliminated.
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Figure 5: Vorticity matching - initial vorticity contour
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Figure 6b: Vorticity diffusion with vorticity
ticity matching

matching

23



ﬂj

4.2 Coarse Grid Region

Away from the blades, where the grid is coarse, this velocity correction
takes a particularly simple form : Rather than computing velocity corrections

so that @ matches an imposed (T)o, we simply drive ® to zero outside a region
defined by the L Field coordinates. This process can be described as vortex
capturing. This capturing technique is simpler to use in coarse grid regions
than the w matching version since it does not involve defining an Zf)o
distribution on the L Field and computing the stretching factor. Further, even
a defined 50 distribution would have to be scaled if it were to be imposed, or a
fine grid required everywhere, since the grid that we should use for
compurtational efficiency can be too coarse in certain regions to resolve the
initial distribution. The capturing scheme operates in a similar way to shock
captu'ring schemes, where the discontinuity is automatically spread over
several grid cells regardless of grid size with a distribution that is not specified
but results from the numeric.

This form of the method is almost completely Eulerian: It only requires
a single Lagrangian variable, s, which measures the distance to the vortex
centroid. Many types of Lagrangian distance function appear to work: A
distance function useful for confining the vortex sheets, in our case, is

s = (cjo)?

To accommodate strong concentrated line-type vortices produced by blade-tips,
for values of cko near cktip, this can be modified to

s = (cjo)? + (cko - cktip)?

where cktip is the value of cko at the blade tip. Other variables can be used:
We have had success with the magnitude of the shed vorticity, which is
maximum at the centroid. This is computed shortly after the sheet has been
shed and then numerically convected as a passive scalar. Like the other
functions, this serves to provide a vector ( the normalized gradient ) in the
direction of the centroid of vorticity. Results are presented in Fig. 7 for our
HELIX-1I code using this latter function, for a general convecting 3 - D wake
shed by a single rotor blade. Below, first, the basic formulation of the vortex
capturing technique will be given. Then, results of model studies similar to

24




Q
- |
¢
|
[,
]
i
(-4
g l‘ i < 1
a A7
$ 7 NN
g DN
s -
'
»
~
5
i
°
<
"
$ S
-
T T T T
0 02 s 7

Figure 7: Initial vorticity contour in a cross plane for a single con-
vecting wake sheet obtained from HELIX-I solution

-3
]
e ) [L
s T
P 1 S A | 1 L 1
gy ———
8 F—— —
o | - T t
} {
H /\ ZEREN\ { |
t ;\.\!/ /F
g X\
H N4
[ ]
»n
8
]
[
24
"
,I B “
L]
7 T 1 T T T 1
.0 .2 .5 .7 10. 10. 10. ”" 11
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those presented above for the Near-Blade ( vortex matching ) method will be
described. It should be emphasized that this vortex capturing technique is
very general - it can also be used near the blades, even for cases with
impingement, as long as it is not desired to solve for the detailed, evolving
vortex internal structure.

We use a formulation that has a bias towards smaller values of s. The
correction then transports vorticity towards regions of small s, while
conserving total vorticity. This has proven to be a robust scheme. It allows
concentrated vortices to be accurately and simply convected through regions
with both fine and coarse grid cells, without numerical diffusion. If we
consider a grid cell with velocity defined at the nodes, then the box-type
central differencing that we use to compute the curl results in an o defined at
the cell center ( see Fig. 8 ). We then compute convected values of s at the
nodes, and compute ( at the cell center ) a unit vector pointing to the centroid
of the sheet :

~ Vs
n = =
Vs
The correction to be added to the velocity is then simply
5 = eaixo

where is a constant relaxation factor and are weights computed at cell nodes
( labeled 1) to enforce the biasing. We have had good success with the simple
form:

a = min(0, s - (s)

a4

2]81

This approach was used for computing blade / vortex impingement and
detailed results are shown in Ref. 14-15.
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5. HELIX -  Applications and Results

Before using HELIX -II for forward flight calculations, each module was
separated, tested for accuracy. The modules tested are, the unsteady full
potential equation solver, the wake convection procedure and finally the code
was applied to perform complete forward flight compurtation at low advance
ratios.

The unsteady full potential solver was applied to compute the time
history of loading on an oscillating airfoil for a wide range of Mach numbers.
In Fig. 9a the computed lift distribution is plotted against time and compared
with experiment . The airfoil ocillates + 2.5 degrees about a mean of 0 deg.
The Mach number is 0.755. Good comparison of the lift history is seen. In
Fig. 9b the computed pressure is plotted during a downswing of 2% when the
shock is strongest and compared with data and good comparison is seen. Next,
the HELIX -II wake convection module was applied for a hover computation on
a AH - 1G. The computed load distribution hover solution and wake geometry
are shown in Fig. 10.

Forward flight calculation:

With this background, complete forward flight solutions have been
performed on a two-bladed rotor at advance ratios of 0.15 and 0.19. A new H-
mesh grid generating code is developed for this purpose. The grid is generated
using a two step mapping procedure. First the airfoil coordinates are input at
each spanwise station where a radial plane will be defined. In addition to
these coordinates, the normalized radial plane location ( normalized by root
chord ) and the corresponding twist distribution are input. First a planar H -
mesh is generated at each radial station with specified boundaries. The axial
boundaries are chosen to be approximately at 1 radius. Next, the planar grids
are transformed to a series of cylindrical grids with constant radii. The stream
wise extent is determined from the number of blades.

2n
Nblades

Omin - Omax =

The transformation from the planar to cylindrical grid is performed using:
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Figure 9: Comparison of surface pressure and unsteady airloads for an oscillating
airfoil at transonic speed - computed using HELIX 11
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Once the grid is obtained on a single blade it is rotated by appropriate angle to
obtain grids on other blades.

The rotor blade chosen for HELIX - II studies has been AH1G rotor with
an Aspect ratio of 9.8. It uses a 11% thick symmetric airfoil along the span.
Three different grids have been generated containing about 350,000 to 400,000
points. Of this about 200 points are distributed along the azimuth, about 50 in
the normal direction and about 40 in the radial direction. A cylindrical section
is shown in Fig. 11. The twist and a collective pitch angle are built into the
grid by rotating each radial station. Finally, the blade motion harmonics are
input from the flight test values. These are the blade coning angle, the first
longitudinal and later cyclic pitch coefficients and blade flapping harmonics.
These coefficients correspond to a particular trim condition. Two different
conditions have been chosen at advance ratios of 0.19 and 0.15. The lateral
and longitudinal cyclic pitch variations have been obtained from Ref. 16.
Also, the blade flapping harmonics - zeroth ( coning ) and first are input from
this report. The tip Mach number is 0.60.

The potential has been initialized to zero. The initial wake is undistorted
one obtained with rotational speed and a uniform axial flow. The initial blade
position corresponds to O degree azimuth. The undistorted wake has 21 nodes
distributed along the spanwise direction and 100 azimuthal nodes ( Fig. 12 ).
The radial circulation distribution is input from an earlier hover calculation
and there is no azimuthal variation of circulation initially. Thus this starting
wake is very approximate and hence a better way of starting the solution
would involve specifying a more accurate circulation variation from either a
lifting a line code or from a previous calculation. In the absence of such
information the present starting procedure can be used. This results in a
longer computing time - requiring about 6 - 8 revolutions before a periodic
solution is obtained. At each time step, the wake is distorted to follow the local
flow at that instant and a new node is added to the wake. In the present
calculation, for every node added a far wake node is dropped thus maintaining
the total number of azimuthal nodes a constant. The effect of the far wake is
included using extrapolation.
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In Fig 13 the computed wake geometry is plotted at two different
azimuihs corresponding to 90 and 180 degrees. This wake s obtained after
6 rotor revolutions of computations. The wake rolls up and convects fairly
close to the blade. At 90 degree and 270 degree azimuths their proximity to the
blade cause particularly a strong interaction.

Computations have been performed at two advance ratios 0.15 and 0.19.
In Fig. 14 contours constant circulation is plotted for 7 rotor revolutions. The
loading corresponding to revolutions 5, 6 and 7 are nearly identical
signalling the arrival ot periodic state. This figure also highlights regions of
strong BVI occuring on the retreating side. There is a sudden variation in
airloads which begins near the tip and extends over the entire span. In Fig. 15
the computed sectional loads are plotted as a function of azimuth for differnt
radial stations. There is a strong BVI induced loading at 90 degree on the
advancing side and at 270 degree on the retreating side. In Fig. 16 and 17 the
computed load distribution are compared with CAMRAD/JA computations and
flight test data!10:17), A detailed analysis of these comparisons loading are
made in Ref. 18 and 19. The magnitude of interactions are less severe when
compared with the experimental data. This may have been caused by the lack
of resolution and hence an excessive smearing of the vortex. In order to
prevent this, with this existing wake the solution can be recomputed over a
short interval using a finer grid. This interval would cover the region of BVI
both on advancing and retreating sides. Also, a smaller time step would
enhance the time accuracy. With a finer grid, the core of the vortex and the
spreading of the wake will be reduced. With a better definition of the wake
region interactions become stronger. The use of a very fine grid for the
entire grid will be computationally expensive also may cause wake stability
problems. But in the present approach, fine grid is used only as a post
processing of the solution over a short interval and since no wake updates are
performed on this grid the solution is stable. In order to study the effect of the
time step core size and marker resolution computation have been performed
using 1 degree time step. The wake for this calculation's interpolated from a 4
degree wake. Also a smaller spreading distance has been used. These
computed results are compared with data in Fig. 18. There is a marked
improvement in the correlation of peak to peak loading variation due to BVI
on the advancing side.
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Conclusions

A new free - wake analysis CFD method has been developed that is
applicable both for low and high advance ratio forward flights. At low
advance ratios the wake effects are nearly an important as in hover. But at
the same time the solution is time dependent unlike hover and hence
represent the most difficult region to accurately predict. Several important
effects such as a complex wake system, transonic flows near the tip, the
specified blade motion and blade deformations due to aerodynamic loads should
be taken into account.

HELIX - II handles this complex problem in a unified manner. The wake
effects are fully included by the unique vortex embedding procedure.
Specified Blade motion terms for a trim calculation are incorporated with
simple grid modifications confined to regions near the blade. The method is
fully compressible and can capture non - linear transonic shocks accurately.
For elastic deformations a coupling procedure with a structural code will be
required. When coupled, the aerodynamic loads will be input to the structural
module which will in turn provide blade deformations to HELIX - II. The
torsional deflections and angles can be incorporated as a grid modification.

At present HELIX - II runs on a super computer at takes about 8 CPU
hours on a YMP for 1 trim calculation. With a better starting solution this can
be greatly reduced. In addition, the current version performs detailed
computation on all blades. Hence requires a large number of grid points
especially in the azimuthal direction. This may not be necessary. Detailed
computation is required only on one blade and other blades can be represented
by a lifting line whose circulation can be obtained from the first blade's
circulation at an earlier time. Future efforts will be concentrated in cutting
this requirement so that more complex multiple blade configuration can be
easily handled. Also, the vortex confinement procedure described earlier can
be used for direct interactions.
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COMPUTATIONAL VORTICITY CONFINEMENT:
A NON-DIFFUSIVE EULERIAN METHOD
FOR VORTEX-DOMINATED FLOWStt

John Steinhoff,}* Clin Wang,* David Underhill,t Thomas Mersch,} and Yonghu Wenrent*

ABSTRACT

A new “Vorticity Confinement” method is described which involves adding
a term to the momentum conservation equations of fluid dynamics. This
term depends only on local variables and is zero outside vortical regions.
The partial differential equations with this extra term admit solutions which
consist of Lagrangian-like thin vo-tical structures (such as vortex “blobs”
in 2-D and vortex filaments in 3-D) which convect with a fixed internal
structure, without spreading, even if the equations contain diffusive terms.
Solutions of the discretized equations on a fixed Eulerian grid show the same
behavior, in spite of numerical diffusion.

This modification appears to be very useful in the numerical solution of
flow problems involving thin vortical regions. The discretized Euler equations
with the extra term can be solved on fairly coarse, Eulerian computational
grids with simple low order (first or second) accurate numerical methods,
but can still resolve and accurately convect concentrated vortices without
spreading due to numerical diffusion. Since only a fixed grid is used with
local variables, the Vorticity Confinement method is quite general and can
automatically accommodate changes in vortex topology, such as merging.

In this paper, applications are presented for incompressible flow in 2-
D, including co-rotating vortices and Vortex Sheet Rollup. The method,
however, is not restricted to 2-D (results of an application to 3-D helicopter
rotor flow in generalized coordinates have been previously presented).

1’1 This work was partially supported by U.S. Army Contracts NAS2-13079, DAAL03-89-C-0027
The University of Tennessee Space Institute, Tullahoma, Tennessee 37388
* Flow Analysis, Inc., Tullahoma, TN 37388
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1. INTRODUCTION.

In high Reynolds number flow, thin regions of concentrated vorticity often exist, which
convect through the flow field. These vortical regions can be much smaller in extent than
the other length scales in the flow. In these cases the details of the internal structure of
these regions may not be of interest, but only the total vortical strength and motion of
some suitably defined centroid of each. Computational methods which neglect the accurate
computation of the internal structure of these regions can be thought of as a “zeroth order”
step in a computational sequence, where the next step would involve, for example, including
the effects of viscosity and/or turbulence on this structure.

There are, basically, two ways of treating such “inviscid” flows in conventional com-
puting methods — Eulerian and Lagrangian:

Eulerian methods involve using a fixed computational grid and discretizing and solving
the basic partial differential equations which describe mass and momentum conservation
in the absence of viscosity (and also include energy conservation for compressible flow).
These methods do not require specification of the shapes of the vortical regions: They
treat vorticity as being present everywhere and solve the same equations at each point.
In computations with these methods, attempts are made to attain a reasonable internal
structure for thin vortical regions with a2 minimum number of grid cells across them.
A serious disadvantage concerns numerical diffusion which arises in these computations:
After a number of time steps the vortical regions tend to diffuse to much larger sizes than
would result from only physical diffusion, unless a relatively large number of grid cells are
allocated to the region of concentrated vorticity [1].

A very different approach to solving the same inviscid fluid dynamics problem involves
the use of Lagrangian markers that convect with the flow (using some suitably defined
mean velocity at each marker location). These methods, in the form of “Vortex Lattice” or
“Vortex Blob” techniques for incompressible flow (2] and “Vortex Embedding” methods for
compressible flow [3] entail representation of vortex sheets or vortex filaments by surfaces
or lines defined by markers. These objects represent the centroids of the vortical regions
and the main quantities of interest are the total vorticity around each point of a centroid
and its location. Usually, a “spreading” function is specified that, effectively, defines the
internal structure of vortical regions treated with this technique. Since this structure
is specified, it can be kept constant or varied slowly (to simulate the effects of physical
diffusion), thereby avoiding the numerical diffusion problem of Eulerian methods.

Unfortunately, there are disadvantages to these Lagrangian methods that limit their
usefulness for many realistic problems: Since the vortical regions are defined by connected
sets of markers, the topology of each region should be known beforehand so that a suitable
array of markers can be computationally defined. In general flows, multiple sheets can
be shed from different places on smooth surfaces and some may reattach, making marker
specification very difficult. Further, even in problems with simple vortical regions, if these
regions interact with solid surfaces, their topology may change, requiring new specifications
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of the marker inter-connections. Examples include vortices being “cut” by thin objects,
such as wings, and reconnecting. In addition, vortical regions cannot easily be made to
merge in a natural way if they are defined by markers. This makes it difficult to compute,
for example, merging of vortex rings or trailing vortices generated by aircraft. (Lagrangian
methods which use large numbers of unconnected markers with overlapping structures also
appear to require some information on the locations of vortical regions for the allocation
of markers [4].)

In this paper we present a new method for computing flows with thin concentrated
vortical regions. The method uses only a fixed, Eulerian finite difference computational
grid and does not involve Lagrangian markers. Hence, like conventional fully Eulerian
methods, it does not have the disadvantages of Lagrangian methods. It can treat general
concentrated vortical distributions in the form of lines and sheets which are shed from sur-
faces. These vortical regions can interact with other surfaces and each other and change
topology, and no special logic is required. For example, vortex regions can merge, auto-
matically. On the other hand, these thin vortical regions convect with a fixed internal
structure, defined over as few as 2-4 grid cells, without spreading, even when the basic
finite difference method has significant numerical diffusion.

The method involves adding a term to the momentum part of the basic continuum
Euler equations. Even when a diffusion term is also added to these equations, or the basic
finite difference solution method has diffusive errors, these modified equations admit solu-
tions which consist of concentrated vortical regions which attain a fixed internal structure
and convect without spreading. The extra “Vorticity Confinement” term that is added is
local, and simple to discretize. Also, it is only non-zero within the vortical regions, and
does not change the total vorticity or mass within those regions. Further, for a large class
of vorticity distributions, including those most likely occurring in problems of interest, it
does not change the total momentum.

First, the basic method will be described. Then, simple closed-form solutions will be
presented for the modified continuum equations. A numerical method for implementing
the method in a discretized system will then be given. Finally, examples of the method
will be presented for the convection and interaction of concentrated vortical “blobs”, and
Vortex Sheet Rollup in 2-D. In the conclusion, limitations and vossible extensions of the
method will be discussed.

2. VORTICITY CONFINEMENT METHOD.

2.1. Basic Formulation. Some of the details of the basic method are presented in
Refs. [5], [6], and (7). Diffusion is an integral part of the basic method, and we include it in
the continuum equations. (It represents the diffusive part of the numerical error when the
equations are discretized.) Thus, we really have a set of modified Navier-Stokes equations.
Although the method should be applicable to general compressible flows, we only consider
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incompressible flow here. We have, in 3-D,
V.¢g=0 (1)
0ig=—(9-V)a+V(p/p) + uV3q + ¢k

where ¢ is the velocity, p pressure, p density, and u the diffusion coefficient. For the
additional term, € is a numerical coefficient which controls the size of the convecting
vortical regions. The “Confinement Term” has the form:

k=-nxw,
(2)
P
V|
where
w=Vxgqg

is the vorticity and 7 is a scalar field that has a local minimum on the centroid of the
vortical region. Different versions of the method depend on the definition of n. In the
simplest, described here, we have

n=—jwl (3)
(Discretized numeric.] methods that we have developed to implement this correction are
described in Refs. [5], [6], and [7].)

In the confinement term, 7 is a unit vector pointing away from the centroid of the
vortical region and the term serves to convect w back towards the centroid as it diffuses
away. This convection increases the diffusion term and a steady-state form results when
the two become balanced.

Additional possibilities for the method involve specifying an auxiliary field (»*) inde-
pendently of w, convecting it with the flow, and computing 7 as a function of 7*. Some
discussion of these other versions are provided in Refs. [5], [6], and [7).

The new method has some of the features of the characteristic-based “artificial com-

pression” method of Harten [8]. However, it is much simpler and, unlike that method, the
correction is limited to the vortical region.

2.2. Salient Features of Vorticity Confinement Method. It will be seen that steady-

state solutions exist (1n the frame of the convecting vortex), even with diffusion present,
for any (positive) value of . Qur basic point is that it may make more sense to discretized
this set of equations (1-3) which have thin, well-behaved vorticity distributions, even in the
presence of numerical diffusion, than to discretized the unmodified, inviscid Euler equa-
tions which only admit vortical regions that continue to spread, if there is any numerical
diffusion.

An important feature of the vorticity confinement method is that the correction is lim-
ited to the vortical regions. Unlike artificial viscosity-like terms which are small everywhere
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except near discontinuities, this correction vanishes outside vortical regions. Another im-
portant feature concerns the total change induced by the correction in mass (6I,) and
vorticity (6I,), integrated over the vortical regions: In general 3-D flow, because of the
vanishing of k outside the vortical regions, we have:

61p=5/'\'7-kdv=0

5Iu=e/kadv=0

where the integration is done over the vortical regions. Another important quantity that
can be conserved with the method is momentum. Here we have a more limited proof. If
we have a thin vortical “line” that is slowly varying along its length, then we can take a
2-D section and write for the change in momentum there:

5Ik=€/kda

where the integral is over the 2-D section. In this case:

Vw

=w,—v—;-xl

k

~

where w is the value of w in the direction of the vortex line (!) and Vw and k are in the
2-D plane of the section. We have

81 =sp]><7

Vw
J = / ‘.dl—vji'da

In general, J will not be zero. However, for the class of w distributions that have
two axes of symmetry (such as elliptical distributions) J will vanish due to symmetry.
The confinement term is intended to be used where thin vortical regions are convected
over relatively long distances and where the velocity (except for that due to the vortex)
is slowly varying on the scale of the vortex diameter. In that case, we would expect the
viscous terms (either due to the basic numerical convection process or added explicitly)
to symmetrize the w distribution since any strong, concentrated vortex will be spinning
rapidly. As a result, we would expect J and hence 6} to be small. Further, in the context
of the above use of the method, where the “external” velocity field is smoothly varying,
we should be able to make local corrections to the basic form for k to reduce any non-zero
values of 61 that occur due to lack of symmetry. These small corrections could depend

where
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on elements of the stress tensor. Other modifications and extensions of the method wiil
be discussed in Section 3.

We will see in the next sub-section that the basic solutions to our modified flow
equations are axisymmetric blobs with vorticity that decreases exponentially with radius
from the center (in 2-D). Since vorticity is conserved, 3-D vortex “filaments” will have
the same structure in each 2-D cross-section. A very important feature of the confinement
method, of course, concerns the interaction of these vortices with solid surfaces and with
each other. Additional important features concern the roll-up of thin vortex sheets.

Considering first the interaction with solid surfaces, the simplest case involves a viscous
flow calculation where the boundary layer is to be resclved in the immediate vicinity of the
surface. Then, a fine, high-resolution computational grid will be used in that region. Going
back to the basic idea of the method — that it be used only in regions where numerical
diffusion would be a problem (i.e., coarse grid regions), it can be seen t"-+ the correction
should not be used in this higk-resolution area and that it be made wero. This can be
accomplished by making the coupling constant, ¢, depend on grid size so that it vanishes
in high resolution areas where it is not needed. This dependence on grid size would also be
required to ensure that the confinement correction does not lead to errors in the viscous
boundary-layer calculation itself. Other cases, involving the interaction of vortices with
surfaces where the grid is not fine and where only inviscid computations are done, have
been carried out and show the expected diffusion-free convection. Numerical studies of
convection of a concentrated vortex past a cylinder in 2-D are shown in Section 4.1.

The vortex interaction feature can be studied by considering the interaction of vortex
pairs. For example, in the high Reynolds number limit, co-rotating vortices that are far
apart should stay apart for a relatively long time and ones that are close should quickiy
merge [9]. The vortices should approximate inviscid flow, except when they finally merge.
when there should be a viscous-like behavior. This final merging property is analogous to
a Kutta condition for “inviscid” flow separation and an entropy condition in compressible
Euler solutions {10]. This feature is necessary for a realistic vortex computation method.
Numerical results for two co-rotating vortices are presented in Section 4.2.

The roll-up of a thin vortex sheet with elliptical circulation distribution is a standard
test case for vortex dynamics methods. Numerical results of this flow are presented in
Section 4.3. An important feature here is the lack of sensitivity of the final main vortex
position to the confinement parameter, ¢, and that the results reproduce well the salient
features of some similar experimentally measured flows.

2.3. Closed-Form Solution: Axisvmmetric Vortex. For an isolated axisymmetric vor-
tex in 2-D uniform flow, we have;

n= —]w(r, t)'

and

n=Vn/|Vy|=r/r
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where r is defined with respect to the ~:nter of the vortex. We define
g=7¢T(r,t) + 4o

where €y is a unit vector in the azimuthal direction and ¢, is a vniform velocity. Substi-
tuting this into the confinement scheme, with simulated numerical diffusion we have, in a
frame convecting with ¢,

Oig = puV g —efi x w.

If € =0, the solution is
T r2
r=B(1- %)

r

This, of course, results in a continually spreading vortical region with radius ~ /2ut and
no non-trivial steady solution.

When ¢ > 0, we can write an equation for the steady solution with ¢ = 0:
The solution which is finite at r — 0 is:

T(r) = % [1

|
N
—
+
8l
N~—
[
|
el
—

where

is the length scale.
This continuum solution should be a good approximation to the actual solution of the
discretized equations with numerical diffusion and the capturing correction, for r > a. For
r X a, discretization effects will be important since the vortex will be spread over several
grid cells.

Other closed-form solutions for confined vortex sheets and some simple numerical tests
of the confining method for vortex blobs are presented in Refs. (5], (6], and [7].

3. NUMERICAL IMPLEMENTATION.

3.1. Basic Flow Solver. We use an efficient scheme that is, basically, a primitive vari-
able fixed-grid Euler equation solution method: This involves numerically convecting the
velocity components and computing a pressure term to enforce mass conservation. The
capturing method is then used to compute a correction that, effectively, eliminates the
numerical diffusion in the convection. In addition to being very efficient, our method can
provide a smooth transition to an unperturbed, conventional primitive variable Navier~
Stokes scheme where the grid is fine enough and any turbulence models reliable enough to
accurately resolve the flow.

3.1.1. First, “convected” velocities are computed on the Eulerian grid.
gt =Cq
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In the continuum limit (for small At), this can be written
gt =q" - At(g" - Vg

Any accurate numerical convection routine could be used here. In the results presented
in the next section, we use a second order accurate method with second order numerical
viscosity.

3.1.2. Then, a velocity correction, éqy, is made on the grid such that, at each node,
vorticity is confined:
q2n+1 — q;l+l + 6qr‘z,+1

The computation of this convection will be described below in 3.2.

3.1.5. Enforcement of Mass Conservation. A potential is solved for on the Eule-
rian grid such that the sum of the gradient of the potential and the convected velocity
with correction enforces mass conservation and normal flow conditions on solid surfaces.
Our use of convected velocities together with a potential is similar to the split-velocity
Euler/Navier-Stokes solver of Ref. [11]. We have

qn+1 =q121+1 +V¢n+1
The potential, $"*+!, satisfies the Poisson equation
V24t = V. q;+1
and normal flow conditions on solid surfaces:
Ong™t! = —gz "
The potential has the effect of a pressure term computed to satisfv mass balance.
V-g=0

In the continuum limit, the above steps also satisfy the inviscid momentum balance relation
(without the confinement term):

g = —(g-V)g+V(P/p)

Any Poisson solver can be used for this step. For application to 3-D helicopter flow,
a Jameson-type generalized-coordinate, conservative finite volume method was used on
a blade-conforming grid and an efficient implicit Approximate Factorization method was
used to converge to a potential solution [12]. The results presented in Section 4.1 use a
multigrid solver and in 4.2 and 4.3, an FFT-based and ADI solver.
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3.1.4. Corrector Step. Velocities computed in the above steps are used as “predictor”
values and these steps are repeated in a “corrector” mode.
The above steps are repeated for each time step.

3.2. Confinement Term. The confinement term is added explicitly at each time step.
We use a formulation that has a bias towards smaller values of n(—|Vw|). The correction
then transports vorticity towards regions of small n, while conserving total vorticity. This
has proven to be a robust scheme. If we consider a grid cell with velocity defined at the
nodes, then the box-type central differencing that we use to compute the curl results in
an w defined at ihe cell center. We then compute average values of 7 at the nodes, and
compute (at the cell center) a unit vector pointing away from the centroid of the vortex:

v

~
N == —~——

|Vl

The correction to be added to the velocity is then simply
bgy = —cAtain X w

where ¢ is a relaxation factor (which can depend on grid cell dimensions) and a; are weights
computed at cell nodes (labeled 1) to enforce the biasing. We have had good success with
the simple form:
a; = min (0,m— < n>)
al
!

21 a

where < n > is the averaged value of n, over the cell nodes.

a; =

4. NUMERICAL RESULTS.

The basic numerical solution method is second order accurate and incompressible.
It is similar to that of Ref. [11]. The method is explained also in Refs. [5}, [6], and [7],
where an application of the confinement method in 3-D in generalized coordinates is also
described for Helicopter Rotor Flow. Applications of the method to convection of a vortex
in 2-D uniform flow are also described in Ref. {7]. In this section results will be presented
for several 2-D flows.

4.1. Vortex-Surface Interaction. Results of a vortex convecting closely past a cylinder
in a flow that is uniform in the far field are presented. In Fig. 1 contour plots of vorticity
are presented for a sequence of times. The contours have the same value in each plot,
extending from about 30% maximum value, and show that the vortex does not diffuse.
For this run, a value of 0.02 was used for €. Plots corresponding to the first two times are
shown in Fig. 2 with £ = 0 (no confinement). The large effects of the numerical diffusion
inherent in the basic numerical method are obvious. The grid used in both computations
is shown in Fig. 3.

-9-




4.2. Co-Rotating Vortices. Two vortex “blobs” are treated, each spread over several
grid cells. Neumann conditions are imposed on the boundaries of a 64 x 64 Cartesian grid.
Three solutions are presented: one with no confinement and two with confinement with ¢
= 0.05. We define a “core diameter” of a vortex by the diameter of its vorticity contour
corresponding to about 30% of the maximum value, or about 5 grid cells for the confined
vortices. The first two solutions involve an initial separation of 4 core diameters: one
without the confinement term and one with. Contours of the initial vorticity distribution
are presented in Fig. 4. After 40 time steps of the computation, the contours are plotted
in Fig. 5 for the case with no confinement correction. This total time corresponds to a
rotation of the two vortices of about .45 radians. It can be seen that numerical diffusion
results in extensive spreading of the vortices, since the maximum value of vorticity has
decreased by a factor of about 22. The CFL number is about 4. After 80 time steps, or a
rotation of about .9 radians, the vorticity contours, as seen in Fig. 6, are spread widely and
the maximum vorticity reduced by a total factor of about 33. Results, with the confining
correction turned on, at 80 and 320 time steps or .9 and 3.6 radians, are presented in
Figs. 7 and 8 respectively. After a few initial time steps, each vortex reaches a stable state
with maximum vorticity about .38 of the initial value. This does not reflect a loss of total
vorticity but just a redistribution. A third case is presented with the same conditions, but
an initial separation of only 2 core diameters. It can be seen that after a rotation of about
1.8 radians the vortices are fully merged, as shown in Fig. 9. This is to be expected for
actual vortex blobs [9].

An interesting feature concerns the lower levels of vorticity. Contours starting at 3%
maximum in intervals of 3% maximum are presented in Fig. 10 for a case with an initial
separation of 3 core diameters, on a 128 x 128 grid. After 1.8 radians rotation, the two
vortices show spiral arms similar to those seen in inviscid high-resolution pseudospectral
computations of elongated vortices [13]. Although constant-vorticity, co-rotating vortex
blobs are expected to have stable solutions if they are far enough apart, the vortices treated
here have a smoothly decreasing distribution and should tend to merge with shedding of
spiral arms, as in the vortices treated in Ref. [13]. The effects of our confinement term
as well as the diffusion are along the gradient of the vorticity magnitude and do not seem
to interfere with the shedding of these arms, which are caused by a varying velocity field
mainly normal to this gradient. It can be seen that a weak Raleigh-Taylor-like instability
causes the arms to break up into small, regular strings of vortex blobs. This could probably
be eliminated by a change in the confinement term, so that continuous arms are shed, but it
apparently would not have much effect on the overall solution. A simulation starting from
almost the same initial vorticity distribution was performed with a vortex-in-cell method
with several thousand point vortices on a 128 x 128 grid [14]. The results are plotted in
Fig. 11 after a time similar to that for the above run. The outer-most point vortices of
Fig. 11 correspond to the outer-most contours of Fig. 10 and the results are quite similar.
This agreement was not expected, since the main objective of the confinement method was
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to only prevent the main vorticity from diffusi..z and not to accurately treat detailed, low
level features of the internal structure.

4.3. Vortex Sheet Roll-Up. This case involves an initially flat vortex sheet in 2-D with
an elliptical circulation distribution:

T(S) = Ty(1 ~ §?)*

in a square domain, where the left wall corresponds to S = 0 and the end of the sheet, at
S =1, is initially in the center of the domain. In the computation, Neumann conditions
are imposed on the four sides of the domain. Initially, the sheet is slightly spread in the
vertical direction on the (128 x 128) grid, as shown by the vorticity contours in Fig. 12.
The same contours are presented in Fig. 13 for a solution after 280 steps. A value of
.0005 was used for € (the normalization of ¢ is different for the Roll-up case than the cases
presented above). A region of concentrated vorticity can be seen to develop. Contours
for the same time but with no confinement, shown in Fig. 14, show a considerably more
spread vortex.

A final case concerned variations of the solution with the one parameter in the method:
¢. In order for our method to be useful the position of the vortex should not depend on ¢,
only its core size. This is similar to shock capturing methods where it is important that the
shock position not depend on the parameter multiplying the artificial viscosity, but only
the shock thickness. The same case presented in Fig. 13 after 280 time steps is presented
in Fig. 15, but with a value of ¢ four times as large (.002). It can be seen that the vortex
is much more concentrated but that it is in the same position, to plotable accuracy.

A delta-wing sheds a vortex sheet from the leading edge that is similar in some respects
to this rolling-up sheet. Experimentally measured vorticity contours (15] are shown in
Fig. 16 (reproduced from that paper) for a sharp-edged delta wing in a cross-stream plane
at .3 chord. Also shown in this figure are the Navier-Stokes 3-D finite-difference solutions
by the authors of Ref. [15], using a conventional method but, (in one case), with an
embedded fine-grid. The resolution near the vortex was finer in their calculations than
those presented here (in the cross-stream plane). It is interesting that the computed
contours are very similar to our case without confinement, and that the experimental
contours are very similar to our case with confinement. Of course the delta-wing is very
different from the simple 2-D roll-up treated here, but the salient features of the rolling-up
vortex are similar.

5. CONCLUSION.

A method has been presented for computing flows with thin, concentrated vortical
regions, which should be important for many high Reynolds number aerodynamic flows.
Discretized mass and momentum conservation equations are solved on a fixed Eulerian grid,
as in conventional Euler/Navier-Stokes methods. However, a “Vorticity Confinement”
correction is applied to the momentum conservation equations in the vortical regions.
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The effect of the Vorticity Confinement term is to confine concentrated vorticity to
thin regions extending over a small number of grid cells as they convect through the flow.
The internal structure of these vortical regions attains a fixed, steady-state form with-
out spreading, even though the basic, discretized momentum equations involve numerical
diffusion.

Applications of the method to incompressible flows involving inviscid vortex-surface
interactions, co-rotating vortices and vortex sheet roll-up in 2-D were presented. These
show the effectiveness of the method even when coarse computational grids are used. For
co-rotating vortices, at large scales, the vortices act like inviscid solutions. However, at
small scales, when the vortices finally merge, salient features of viscosity are automatically
simulated. Also, spiral arms, seen in much higher order, more detailed calculations are
computed. Finally, the vortex sheet solutions showed the lack of sensitivity of the final
vortex position to the confinement parameter, at least for that flow, and they showed that
the salient features of experimentally measured rolling-up vortex sheets should be resolved.

The method has already been applied to a realistic helicopter rotor flow in 3-D. How-
ever, additional testing is required for more complex flows and for applications to com-
pressible transonic flows. For example, the use of general non-isentropic, compressible flow
solvers may require an additional entropy confinement term to avoid entropy diffusion away
from concentrated vortical regions. Also, additional testing is required for 3-D applica-
tions, including interactions of vortices with solid surfaces. Further, a characterization of
the numerical errors should be given for different basic flow solvers with the confinement
term.

Interesting extensions include the simple possibilities of having vorticity-dependent
upper and lower cut-offs for the coupling constant, ¢. These should, respectively, accom-
modate “waterbag” constant-vorticity models and smoothly varying background vorticity
distributions. Further extensions could include extra terms to reduce any numerical errors
that are discovered in applications of the method, or to “encode” desired features of the
internal dynamics of the simulated vortices.
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Abstract

A new method has been developed for computing
advancing rotor flows. This method uses the Vor-
ticity Embedding technique, which has been devel-
oped and validated over the last several years for the
hovering rotor problems. .n this work, the unsteady
full potential equation is solved in an Eulerian grid
with an embedded vortical velocity field. This vor-
tical velocity accounts for the influence of the wake.
Dynamic grid changes that are required to accom-
modate prescribed blade motion and deformation
are included using a novel grid blending method.
Free wake computations have been performed on a

Presented at the American Helicopter Society 49th Annual
Forum, St. Louis, Missouri, May 19-21, 1993. Copyright
©1993 by the American Helicopter Society, Inc. All rights
reserved.

two-bladed AH1-G rotor at low advance ratios in-
cluding blade motion. Computed results are com-
pared with experimental data. The sudden vari-
ations in airloads due to blade-vortex interactions
on the advancing and retreating sides are well cap-
tured though the magnitudes of these changes are
under-predicted. Computed wake geometries and
their influence on the aerodynamic loads at these
advance ratios are also discussed.

List of Symbols

Cn = normal force coefficient

M = local Mach number for blade section
My = hover tip Mach number

r = spanwise distance along the rotor blade
R = radial distance to rotor tip
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T = rotor bound circulation, first Clebsch
variable
A = wake geometry parameter, second Cleb-

sch variable

Qv = vortical velocity cornponents

7 = rotor advance ratio

Q = rotor rotational speed

X = Wake coordinates in computational
space

¥ = rotor azimuthal angle, deg.

C, = section thrust

Introduction

It has long been recognized that the ability to
compute rotor wake formation and convection is
the single most important element required for the
prediction of rotor performance, vibratory loads,
and acoustics. Almost all forward-flight, free-
wake prediction methods have been boundary-
integral methods. These are typified by the vortex-
lattice, lifting-line method used in the well-known
CAMRAD/JA [1] and the more recent curved-
wake-element, lifting-surface methods developed by
Quackenbush et.al. {2]. These are incompressible,
inviscid methods, however, and the detailed predic-
tion of rotor loads (in response to the wake-induced
inflow) requires auxiliary data or analyses.

In order to obviate much of the present need for
airfoil tables, several hybrid schemes have been de-
veloped , wherein an inner CFD potential code is
coupled either to a comprehensive code (containing
a vortex-lattice wake model) (3, 4, 5] or to a free-
wake lifting line rotor analysis code [6]. Coupling
is achieved by providing a partial inflow from the
comprehensive to the CFD code and in turn return-
ing the blade loads to the comprehensive code. The
partial inflow includes geometric, blade motion, and
wake inflow effects and is imposed through a tran-
spiration condition at the blade surface. For effi-
ciency, the CFD calculations are performed outside
the trim loop. The CFD solution for lift is speci-
fied as a base solution inside the trim loop. These
coupled methods combine an incompressible wake
model with a 3-D, unsteady blade solution which
treats almost all but the strongest of transonic flows
(local Mach numbers less than about 1.3 - a result of

the potential approximation). A separate model for
the wake effects is required due to the fact that the
conventional potential method constrains the wake
to lie on a grid plane.

Methods based on Euler or Navier-Stokes equa-
tions, though not restricted by a Mach number lim-
its or wake location constraints, are computation-
ally much more demanding, . Recently, Srinivasan
et.al. developed a Navier-Stokes method to com-
pute the rotor/wake system [7] in hover. However,
strucvured ENS methods rapidly dissipate vortical
structures, such as tip vortices, as a result of numer-
ical diffusion. Such aumerical dissipation is min-
imized by means of high-order schemes and dense
grids but the computational cost is considerable. In
order to obviate this problem, Wake and Egolf (8]
recently coupled a Navier-Stokes flow solver with a
lifting line free-wake code for the wake influence.
These computations were performed on a massively
parallel computer.

At present, there is only one CFD method that
can compute rotor/wake flows with no numerical
dissipation and with computationally reasonable
grid requirements. This is the method of Vorticity
Embedding [9] - a combined Eulerian-Lagrangian
method. The absence of wake dissipation is due
to the fact that the shed circulation is not car-
ried by the grid, but rather by a sheet of con-
vecting wake markers (a Lagrangian tracking pro-
cess), whose circulation is impressed on the adja-
cent grid points as a local vortical velocity distri-
bution. These impressed vortical velocity distribu-
tions are used as a forcing function for a standard,
Eulerian, full-potential flow solver. This approach,
implemented in the HELIX-I code, has been suc-
cessfully applied to the prediction of hover wakes
and performance (10].

This paper describes the application of this tech-
nique for the computation of low advance ratio fcr-
ward flight wherein the wake effects are extremely
important. This method is efficient in convecting
wakes without numerical diffusion and at the same
time can treat non-linear unsteady transonic flows
that occur near the tip. External coupling is needed
only to account for blade motiou and deformation.
The main objective of this work is to demonstrate
that this new CFD based method can successfully




model complex advancing rotor wakes and related
interactions. A description of the various modules
that are required to accomplish this, is provided.
The computations shown here represent the first
efforts to compute forward flight rotor/wake flows
using Vorticity Embedding. They demonstrate the
feasibility of a unified rotor-wake CFD .omputa-
tion.

Solution Procedure

Since the development of the original Vortex Em-
bedding method, a number of modifications and
enhancements have been made to accommodate
forward flight computations. These modifications
have been implemented into a new code HELIX-
II. Some important features of HELIX-II are: i)
the Unsteady Full Potential Equation is solved and
computations are perfuormed along the entire az-
imuth (360°). ii) Newton-type sub-iterations are
performed for better convergence and time accu-
racy. iii) An improved wake convection procedure
computes the Clebsch variables used in the algo-
rithm more efficiently by using computational co-
ordinates. iv) Prescribed blade motions and elas-
tic deformation are included by modifying tne grid
near the rotor using a simple blending function
method [11].

A schematic of the HELIX-II solution procedure
is shown in Figure 1. It can be see. that each time
step of the free-wake calculation comprises thrr-
major modular computations: i) The Lagrangian
wake convection and vortical velocity calculation,
ii) incorporating necessary blade motion by mod-
ifying the grid and iii) solution of the unsteady
mass conservation equation in generalized coordi-
nates. In this section, each module is described.

Vorticity Embedding

The wake is represented by a set of nodes dis-
tributed along the azimuth at constant intervals and
along the rotor span (Figure 2) . An undistorted
wake is generally used to begin the solution process.
The azirruthal node intervals are determined from
the time step used for the calculation and radial
nodes are situated at grid cell centers. The wake
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Figure 1: Schematic of the HELIX-II Solution
Procedure

convection procedure for a new time step involves
the following steps: i) The inertial coordinates of
the blade fixed grid corresponding to the new time
step are obtained. ii) A set of new marker nodes
is added at the updated blade trailing edge loca-
tion. iii) All wake nodes are displaced to follow the
local flow. This is accomplished using a search al-
gorithm which determines the Eulerian grid cells in
which the nodes are located. The three components
of velocity that are available at the grid nodes are
then interpolated to the marker nodes using trilin-
ear interpolation. Then the wake nodes are moved
using:

Xl,H-Al = Xio1t + VingpAt (1)

Since the azimuthal wake node interval and the time
step chosen for the computation are the same, it is
possible to associate the node [ at the current time
to the node | — 1 at previous time step. In ad-
dition, the cell identifying procedure provides the
marker computational coordinates. They are used
for vortical velocity computation. These integrated
marker nodes define the new wake for the present
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Figure 2: The Lagrangian wake coordinate system represented by a network of nodes in

azimuthal and radial directions

the present time step. The wake geometry and the
blade loading determine the convergence of the so-
lution for that particular time step. In this mod-
ule, the search algorithm requires the maximum
amount of computing time. The present algorithm
is very fast and general. An exhaustive search is
performed only once in the beginning and subse-
quent searches use information from earlier compu-
tations. A uniform azimuthal node distribution is
needed for wake integration. When a large time
step (such as 4 degrees) is chosen this may result
in poor wake resolution in regions near the blade
where the grid is fine. Without enough nodes, the
resulting vortical velocity computation will be inac-
curate. This is due to the fact that, the vorticity
spreading distance is chosen based on the computa-
tional cells and at least one wake node is required
on every cell in the azimuthal direction. In order
to prevent this, a sub-nodal interpolation scheme is
used which sub-divides the computed wake between
nodes. The wake, with these added sub-nodes mim-
ics the local time stepping approach of the hover
code, HELLX-I and is used only for vortical veloc-
ity computation. The sub-division is performed as

follows: Let X;;, be the computed computational
coordinate of the wake node (I,lv). Here [ is the
azimuthal index and lv is the radial index. Define,

(2)

If N, is greater than 1, N; sub-nodes are to be
added between nodes ! and [ + 1. These sub-nodes
will have the azimuthal grid indices as their X-
coordinate and the other two coordinates are ob-
tained using weighted interpolation. That is :

N = Xogrto — Xio

Xoivrge = Xiprpe P/ Fs — X110 F3/ Fs (3)
whereF,, F, and F; are suitable weighting func-
tions. I, the wake node circulation is also inter-
polated in a similar manner to the sub-nodes. This
new sub-divided wake with at least one sub-node
in each azimuthal cell is used for vortical velocity
calculations.

Once the wake is obtained for any given time step,
it is embedded into the Eulerian grid as a vortical
velocity. That is, the circulation of the convecting
Lagrangian wake nodes are impressed on the adja-
cent grid points as a local vortical velocity distri-
bution. This procedure is described in Ref. [9] and
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can be briefly stated as: i.) Compute Lagrangian
wake. ii.) From each Eulerian grid point compute
the distance of a wake panel. If this distance is
larger than a specified smearing distance that grid
node will not get any contribution from that panel.
Otherwise, a shape parameter A, ;; and a strength
parameter [; ; ; are determined at these grid points.
iii.) Using these variables compute ¢; as:

o =TijuVisn (4)
This vortical velocity field which is normal to the
sheet is solenoidal and accounts for the wake vor-
ticity. In forward flight, the wake is time dependent
and there is no single wake geometry. One periodic
solution may require several azimuthal revolutions
of computations and each revolution in turn has as
many wake geometries as the number of time steps.
For this reason an efficient procedure is required. A
new scheme has been developed which is very fast.
In this: i.) The wake convection and the computa-
tion of Clebsch constants are done simultaneously.
That is, in order to convect the wake, the grid veloc-
ities will have to be interpolated to the wake nodes.
This requires the identification of Lagrangian nodes
in the computational space. They are the integer
component of 55;,1,. ii.) Now a vorticity spreading
distance D is defined in the computational space
which specifies the number of cells over which ¢,
will be spread. The circulation of a given node,
(I,{v) is impressed over a region given by,
Riju=int (%) £ D (5)
using Clebsch variables I' and ). Since these two
variables are scalars they are invariant and can be
transported to the rotor grid to obtain ¢,. iii.) A
grid node can get a contribution from more than one
Lagrangian wake node. Hence these contributions
are added. I' and A are computed using interpola-
tion like formulae :

ri,j,k = %%‘f
xi,j,k = L;"ﬁu%“'f (6)
Aijeg = % sin %
where W, ; , is a weighting function given by,
Wisa=1- 22 (7)

As is the distance of a wake node from the grid
point and S, is the signed normal distance of a grid
node from a wake panel. These functions are in
computational space. Finally, ¢, is computed using
Equation (4) Here, the gradient is computed using
the same box scheme as used for the potential cal-
culation.

Full Potential Formulation

Once ¢, is obtained the mass conservation equation,
o = , -
g;-{-v-(pV):O (8)
is solved in the Eulerian grid. Here V is given by,
V=V¢+q ++V (9)

where V, is the velocity due to blade motion. Equa-
tion (8) is solved using the scheme described in
Ref. [9]. The salient features of this solver are:
i.) Equation (8) is discretized using finite-volume
method. ii.) At each time step, Newton-type sub-
iterations are performed for rapid convergence and
time accuracy. iii.) At each time step, local time-
linearization is performed to provide a good initial
guess for the Newton iterations. iv.) Circulation
convection is solved in the wake before it is com-
pletely replaced by the Lagrangian wake.

Only a brief description of the time-linearization
is provided in this section. A more detailed de-
scription can be found in Ref. (12]. Eqn. (8) can be
represented as

F(¢)=0 (10)

where ¢ is the unknown to be solved for at every
grid point at the n + 1 time level, and n is the tem-
poral index. The Newton iteration for the solution
to the above equation is,

OF

F(¢')+3$ , (p-07)=0 (11)

¢=0°

where ¢" is the currently available value of ¢ at the
n + 1 time level. At convergence,

(12)



will approach zero. Equation (8) can be discretized
as

et 4 2 (phU)

+
n+1
+ Z(phV) + & (phW)| =0
(13)
Using expansions similar to that of Equation (11)
for p**! and other flux terms we obtain,

e+ | _ae + [f+3As,
+ o+ 5eas,
+ [p+2as] =0

(14)
In this equation f,g and p are the flux terms and A
is the transformation matrix. This equation can be
rearranged with A¢" terms on the left hand side
and terms involving - and ™ levels on the right
hand side. The LHS is factored using approximate-
factorization {9]. After the rearrangement and fac-
torization the discretized equation looks like
L¢L,LA¢" = RHS (15)
We solve for A¢" and at the end of the sub-
iterations, ¢~ = ¢™*'. In our scheme the spanwise
marching is performed explicitly. Finally, the cir-
culation convection equation is solved in the wake.
At the end of the sub-iteration process, the solver
provides the total velocity field for wake convection

and aerodynamic loads for aeroelastic computation
(if a structural module is included).

Blade Motion

In this section the mechanism to include the pre-
scribed blade motion, such as cyclic pitch and flap-
ping, are described. In addition, the same approach
can be used to account for aeroelastic deformation.
If ©¢,©,. and O,, are the cyclic pitch motion har-
monics, for each time step each blade sectional grid
is rotated by O, where

Oy = 0o + Oy, cos (¥) + Oy, sin(¥) (16)

The original grid and the rotated grids are then
combined using blending functions. That is

X‘ncu = X-‘rotf!j + X-.wmrot (1 - fs’j)' (17)

—

Similarly, the flapping motion is defined by,

B = Bo + Pic cos () + By, sin (F) (18)

The flapping deflection for a given radial station, r,
is given by
Aysiap = 75in (B) (19)

Using this equation the rotor blade deflection at
every span station is computed. It is then used to
translate the blade in the normal direction and a
similar blending procedure confines the changes to
regions near the blade. This process is illustrated
in Figure 3. Finally, using the new and old coordi-
nates, the velocity due to blade motion is computed
as, B .

= X t+at — X,

B=ar (20)

Results and Discussions

Forward flight computations have been per-
formed on the two-bladed AH1-G rotor at low ad-
vance ratios. This rotor, which has a relatively
simple geometry, has been chosen for our first val-
idation effort. The open literature contains an ex-
haustive set of flight test data for a wide range of
advance ratios. A rotor-fixed H-H mesh was gen-
erated using a two-step algebraic scheme. First, a
planar H-H mesh is generated at each radial station
with specified outer boundaries. The axial bound-
aries are chosen to be approximately at 1 radius.
Then, the planar grids are transformed to a series of
cylindrical grids with constant radii. Once the grid
is generated on a single blade it is rotated by an
appropriate angle to obtain the grids for the other
blades. The AH1-G rotor uses a symmetric airfoil
and has an aspect ratio of 9.8. Two different grids
with 350,000 and 425,000 points have been used for
our investigation. Typically, about 200 points are
distributed along the azimuth, 50 in the normal di-
rection, and 40 in the radial direction. A portion of
the grid is shown in Figure 4. The twist and collec-
tive pitch angle are built into the grid by rotating
the section at each radial station. Two different
flight conditions have been chosen corresponding to
advance ratios of 0.19 and 0.15. The lateral and
longitudinal cyclic pitch variations have been ob-
tained from Ref. [13]. Also, the zeroeth (coning)
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Figure 3: Blending method for including dynamic grid changes

and first blade flapping harmonics are input from
this report for a particular trim condition. The tip
Mach number is 0.65.

The initial undistorted wake is obtained using a
uniform axial flow. The undistorted wake has 21
nodes distributed along the spanwise direction and
100 azimuthal nodes. The radial circulation dis-
tribution is input from an earlier hover calculation
and is constant along the azimuth. The starting
wake is very approximate. It is possible to start the
solution process with a more accurate wake from
an earlier computation. However, in the absence
of such information the present starting procedure
is used. This results in a longer computing time -
requiring about 6 - 8 revolutions before a periodic
solution is obtained. Each wake node is displaced
using the interpolated velocities obtained from the
flow solver. At every time step new nodes are added

along the rotor span. In the present calculation, for
every set of nodes added a set of far wake nodes
is dropped thus maintaining the total number of
azimuthal nodes a constant. Thus the free wake
computation is performed over 400 degree azimuth
and the influence of the far wake included using the
wake nodes from earlier revolutions. In Figure 5 the
computed wake geometry is plotted at two different
azimuths corresponding to 90 and 180 degrees. This
is obtained after 6 rotor revolutions and is fully con-
verged. The rolled-up tip vortex regions can clearly
be seen. The wake rolls up quickly and convects
fairly close to the blade. At these two azimuthal lo-
cations, their proximity causes a particularly strong
interaction.

Contours of constant circulation in the wake, af-
ter 7 revolutions of the blade, are shown in Figure 6.
It can be seen here that after about 5 revolutions



a periodic state is reached. Also, the progressive
development of the blade vortex interaction region
over the blade on the retreating side is clearly il-
lustrated. These interactions begin outboard at the
second revolution and spreads over entire the blade.

In Figure 7 the azimuthal variation of lift is plot--

ted along the span. The two distinct regions of
blade vortex interactions can be seen in this figure.
On the advancing side, it happens at about 75 de-
grees near the tip (outboard) and shifts gradually to
about 110 degrees traveling inboard along the span.
On the retreating side, similar interactions occur
starting at about 275 degrees inboard and slowly
moving to about 300 degree and approaching the
tip. For this case the periodic solution has been
obtained after about 6 rotor revolutions of compu-
tations. With a better starting solution this can be
reduced to about 3 revolutions.

In Figure 8 the computed normal load varia-
tion (Cy ) is plotted for different radial stations
as a function of the azimuth. These computations
have been performed at an advance ratio of 0.15.
The strong blade vortex interactions can be seen
on the advancing side at the azimuth of 90 de-
grees and on the retreating side at about 270 de-
grees. The computed solutions are compared with
those obtained using CAMRAD/JA, a comprehen-
sive code (1]. Blade elastic deformation was not in-
cluded and thus conditions were identical to those
used for HELIX-IT runs. For HELIX-II computa-
tions, the blade cyclic and flapping harmonics have
been obtained from the comprehensive code. A uni-
formly good comparison is seen, especially in the
inboard regions. Maximum deviations are observed
at the 90 degree position on the advancing side. On
the retreating side, the magnitude of the wake in-
teractions are somewhat under predicted.

In Figure 9 the HELIX-II computed solutions at
an advance ratio of 0.19 have been compared to
the flight test data obtained from Ref. [13]. The
blade-motion coefficients used for this case has been
obtained from the flight test data. Good com-
parisons can be seen inboard. The magnitude of
the blade vortex interactions have been somewhat
under-predicted near the tip. This is probably due
to two reasons. First, the excessive spreading of the
vorticity, which is performed over certain number

of user specified grid cells. Using a large smearing
distance is analogous to having a fat core in con-
ventional lifting-line models. This large smearing
affects the accuracy of the solution especially on
the advancing side. Generally, a certain minimum
amount of wake spreading is required for stability.
In order to improve the accuracy the solution can be
recomputed using a smaller spreading distance us-
ing a converged wake geometry. The wake wiil not
be recomputed but the core will be redefined. In
this manner, a new core, almost an order of mag-
nitude smaller, can be obtained without affecting
the stability. In addition, the coarseness of the grid
would cause excessive smearing. In order to pre-
vent this, using the existing wake, the solution can
be recomputed over a short interval using a finer
grid. This interval would cover the region of BVI
both on the advancing and retreating sides. With
a better definition of the wake region interactions
would become stronger. The use of a very fine grid
for the entire azimuth will be computationally ex-
pensive but if it is used only over a short range it
should be acceptable.

The choice of time step is another factor deter-
mining the accuracy. For the computations shown,
a time step of 4 degrees is chosen for free-wake cal-
culation. Again, a smaller time step can be used
over a short range and the accuracy can be im-
proved. These possibilities will be explored and fu-
ture computations will include these features.

Conclusion

The method of Vorticity Embedding has been
used to construct the first self-contained CFD
model of a rotor in forward flight. The method (em-
bodied in the code, HELIX-II) predicts the three
dimensional, compressible (transonic) flow about a
rotor, which both generates and interacts with it’s
wake system. Although the entire multi-rotor and
wake system is discretized, the use of a dissipation-
less method permits the use of a smaller grid than
can be achieved by any structured grid method.
The use of a relatively small grid, combined with
a potential based method, makes the scheme highly
efficient. It has been found the wake solution
achieves periodicity (beginning with an undisturbed



starting condition) in about 6 rotor revolutions.
The method has been used to predict the low ad-
vance ratio flow on the AH1-G rotor. Comparisons
with flight loads data and CAMRAD/JA computa-
tions are highly promising and show that CFD can
indeed be used for the treatment of these highly
complex flows. Although the present rotor-wake
computation is probably the most complex appli-
cation of Vorticity Embedding to date, the method
is intrinsically flexible and amenable to many uses.
Vorticity Embedding therefore promises to make a
signigicant contribution both to our understanding
of vibratory loads, performance, and acoustics and
also to the flow predictive methods required by ro-
torcraft community.
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Figure 5: Computed wake geoemtry at 90

and 180 degree azimuths, pu = 0.19
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Figure 6: Contours of constant circulation in the wake for 7 rotor revolutions, x = 0.19

A, 3 - "
/ 0,9 )
e e
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